Effect size for a two-sample means test

$t$ test assuming $\sigma_1 = \sigma_2 = \sigma$

$H_0: \mu_2 = \mu_1$ versus $H_1: \mu_2 \neq \mu_1$

**Stata 13 command**

```
.power twomeans 0 (.4(.1)1), power(0.9) graph(ydimension(delta) xdimension(N))
```

Sample Size: introduction

---

The RCSI Sample size handbook
A rough guide
May 2016 version
Ronán M Conroy
rconroy@rcsi.ie

How to use this guide

1. Introduction: sample size and why it’s important
2. Sample size for percentages or proportions
3. Sample sizes for studies comparing a prevalence with a hypothesised value
4. Sample sizes for studies comparing proportions between two groups
5. Sample size for logistic regression with a continuous predictor variable
6. Sample sizes for logistic or Cox regression with multiple predictors
7. Sample sizes and powers for comparing two means where the variable is measured on a continuous scale that is (more or less) normally distributed
8. Comparing the means of two groups
9. Sample sizes for comparing means in the same people under two conditions
10. Calculating sample sizes for comparing two means: a rule of thumb
11. Sample size for correlations or regressions between two variables measured on a numeric scale
12. Sample size for reliability studies
13. Sample size calculation for agreement between two raters using a present/absent rating scale using Cohen’s Kappa
14. Sample size for pilot studies
15. Sample size for animal experiments in which not enough is known to calculate statistical power
16. Sample size for qualitative research
17. Resources for animal experiments
18. Computer and online resources
How to use this guide
This guide has sample size ready-reckoners for a number of common research designs. Each section is self-contained. You need only read the section that applies to you.

Examples
There are examples in each section, aimed at helping you to describe your sample size calculation in a research proposal or ethics committee submission. They are largely non-specialist. If you have useful examples, I welcome contributions.

Feedback
If you have trouble following this guide, please email me. Your comments help to improve it. If you spot an error, please let me know.

Support
This guide has slowly percolated around the internet. I’m pleased to handle queries from staff and students of RCSI and affiliated institutions. However, I cannot deal with queries from elsewhere. I’m sorry.

Warranty
This document is provided as a guide. While every attempt has been made to ensure its accuracy, neither the author nor the Royal College of Surgeons in Ireland takes any responsibility for errors contained in it.

What’s new
This version May 2016. Updated and very revised material on sample size for reliability studies, added sections on agreement (kappa), pilot studies and qualitative research and a section on sample sizes for multivariate analysis, updated web links.

Introduction : sample size and why it’s important
Sample size is an important issue in research. Ethics committees and funding agencies are aware that if a research project is too small, it misses failing to find what it set out to detect. Not only does this waste the input of the study participants (and frequently, in the case of animal research, their lives) but by producing a false negative result a study may do a disservice to research by discouraging further exploration of the area.

And, of course, if a study is too large it will waste resources that could have been spent on something else.

Key issues: representativeness and precision
When choosing a sample, there are two important issues:
• will the sample be representative of the population, and
• will the sample be precise enough.

An unrepresentative sample will result in biased conclusions, and the bias cannot be eliminated by taking a larger sample. For this reason, sampling methodology is the first thing to get right.

The second issue is precision. The larger the sample, the smaller the margin of uncertainty (confidence interval) around the results. However, there is another factor that also affects precision: the variability of the thing being measured.

The more something that varies from person to person the bigger your sample needs to be to achieve the same degree of certainty about your results.

Key questions in power and sample size
Before you can calculate a sample size, you need some idea about the degree of precision you require or, equivalently, the degree of uncertainty you are prepared to tolerate in your findings. Many sample size calculations also require you to stipulate an effect size. This is the smallest effect that is clinically significant (as opposed to statistically significant). It can be hard to decide how big a difference between two groups should be before it would be regarded as clinically important, and there is no hard-and-fast answer to this question. In fact the whole question of what constitutes a clinically significant finding is outside the scope of statistics. However, you will see from the tables that I have tried to help out by translating the rather abstract language of effect size into terms of patient benefit or differences between people.

The utter unknown
It sometimes happens that there is no previous research in an area and there is nothing known about the phenomenon you are studying. In cases like this, conventional sample size formulas cannot be applied. I have given a method for
determining the size of such pilot studies based on guidelines from organisations which promote the ethical treatment of animals in research.

1. Sample size for percentages or proportions

This section gives guidelines for sample sizes for
- studies that measure the proportion or percentage of people who have some characteristic,
- and for studies which compare this proportion with either a known population or with another group.

This characteristic can be a disease, and opinion, a behaviour, anything that can be measured as present or absent.

Prevalence

Prevalence is the technical term for the proportion of people who have some feature. You should note that for a prevalence to be measured accurately, the study sample should be a valid sample. That is, it should not contain any significant source of bias.

1.1 Sample size for simple prevalence studies

The sample size needed for a prevalence study depends on how precisely you want to measure the prevalence. (Precision is the amount of error in a measurement.) The bigger your sample, the less error you are likely to make in measuring the prevalence, and therefore the better the chance that the prevalence you find in your sample will be close to the real prevalence in the population. You can calculate the margin of uncertainty around the findings of your study using confidence intervals. A confidence interval gives you a maximum and minimum plausible estimate for the true value you were trying to measure.

**Step 1: decide on an acceptable margin of error**

The larger your sample, the less uncertainty you will have about the true prevalence. However, you do not necessarily need a tiny margin of uncertainty. For an exploratory study, for example, a margin of error of ±10% might be perfectly acceptable. A 10% margin of uncertainty can be achieved with a sample of only 100. However, to get to a 5% margin of error will require a sample of 384 (four times as large).

**Step 2: Is your population finite?**

Are you sampling a population which has a defined number of members? Such populations might include all the physiotherapists in private practice in Ireland, or all the pharmacies in Ireland. If you have a finite population, the sample size you need can be significantly smaller.

**Step 3: Simply read off your required sample size from table 1.1.**
Table 1.1 Sample sizes for prevalence studies

<table>
<thead>
<tr>
<th>Acceptable margin of error</th>
<th>Size of population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Large</td>
</tr>
<tr>
<td>±20%</td>
<td>24</td>
</tr>
<tr>
<td>±15%</td>
<td>43</td>
</tr>
<tr>
<td>±10%</td>
<td>96</td>
</tr>
<tr>
<td>±7.5%</td>
<td>171</td>
</tr>
<tr>
<td>±5%</td>
<td>384</td>
</tr>
<tr>
<td>±3%</td>
<td>1067</td>
</tr>
</tbody>
</table>

Example 1: Sample size for a study of the prevalence of anxiety disorders in students at a large university
A researcher is interested in carrying out a prevalence study using simple random sampling from a population of over 11,000 university students. She would like to estimate the prevalence to within 5% of its true value.

Since the population is large (more than 5,000) she should use the first column in the table. A sample size of 384 students will allow the study to determine the prevalence of anxiety disorders with a confidence interval of ±5%. Note that if she wants increase precision so that her margin of error is just ±3%, she will have to sample over 1,000 participants. Sample sizes increase rapidly when very high precision is needed.

Example 2: Sample size for a study of a finite population
A researcher wants to study the prevalence of bullying in registrars and senior registrars working in Ireland. There are roughly 500 doctors in her population. She is willing to accept a margin of uncertainty of ±7.5%.

Here, the population is finite, with roughly 500 registrars and senior registrars, so the sample size will be smaller than she would need for a study of a large population. A representative sample of 127 will give the study a margin of error (confidence interval) of ±7.5% in determining the prevalence of bullying in the workplace, and 341 will narrow that margin of error to ±3%.

Frequently asked questions
Suppose my study involves analysing subgroups, how do I calculate sample size?
In some cases, you may be interested in percentages or prevalences within subgroups of your sample. In this case, you should check that they sample size will have enough power to give you an acceptable margin of error within the smallest subgroup of interest.

For example, you may be interested in the percentage of mobile phone users who are worried about the effects of radiation. A sample of 384 will allow you to measure this percentage with a margin of error of no more than ±5% of its true value.

However, you are also interested in subgroups, such as men and women, older and younger people, people with different levels of education etc. You reckon that the smallest subgroup will be older men, who will probably make up only 10% of the sample. This would give you about 38 men, slightly fewer than you need for a margin of error of ±20%. If this is not acceptable, you might increase the overall sample size, use stratified sampling (where a fixed number of each subgroup is recruited) or decide not to analyse rarer subgroups.

If you want to compare subgroups, however, go to section 1.3
What if I can only survey a fixed number of people?
You can use the table to find the approximate margin of error of your study. You will then have to ask yourself if this margin of error is acceptable. You may decide not to go ahead with the study because it will not give precise enough results to be useful.

How can I calculate sample size for a different margin of error?
All these calculations were done on a simple web page at http://www.surveysystem.com/sscalc.htm

Sample Size: studies measuring a percentage or proportion

7
1.2 Sample sizes for studies comparing a prevalence with a hypothesised value

This section gives guidelines for sample sizes for studies that measure the proportion or percentage of people who have some characteristic with the intention of comparing it with a percentage that is already known from research or hypothesised.

This characteristic can be a disease, and opinion, a behaviour, anything that can be measured as present or absent. You may want to demonstrate that the population you are studying has a higher (or lower) prevalence than some other population that you already know about. You might want to demonstrate that medical students have a lower prevalence of smoking than other third level students, whose prevalence is already known from previous work.

To begin with, you need to ask what is the smallest difference between the prevalence in the population you are studying and the prevalence in the reference population that would be considered meaningful in real life terms? This difference is often called a clinically significant difference in medicine, to draw attention to the fact that it is the smallest difference that would be important enough to have practical implications.

The bigger your study, the greater the chance that you will detect such a difference. And, of course, the smaller the difference that you consider to be clinically significant, the bigger the study you need to detect it.

**Step 1: Decide on the smallest difference the study should be capable of detecting**

You will have to decide what is the smallest difference between the group that you are studying and the general population that would constitute a 'clinically significant difference' – that is, a difference that would have real-life implications. If you found a difference of 5%, would that have real-life implications? If not, would 10%? There is a certain amount of guesswork involved, and you might do well to see what the norm was in the literature.

For instance, if you were studying smoking in medical students and discovered that the rate was 5% lower than the rate for the general population, would that have important clinical implications? How about if it was 10% lower? 10% higher?

**Step 2: How common is the feature that you are studying in the population?**

Sample sizes are bigger when the feature has a prevalence of 50% in the population. As the prevalence in the population group goes towards 0% or 100%, the sample size requirement falls. If you do not know how common the feature is, you should use the sample size for a 50% prevalence as being the worst-case estimate. The required sample size will be no larger than this, no matter what the prevalence turns out to be.

**Step 3: what power do you want to detect a difference between the study group and the population?**

A study with 90% power is 90% likely to discover the difference between the groups if such a difference exists. And 95% power increases this likelihood to 95%. So if a study with 95% power fails to detect a difference, the difference is unlikely to exist. You should aim for 95% power, and certainly accept nothing less than 90% power. Why run a study that has more than a 10% chance of failing to detect the very thing it is looking for?

**Step 4: Use table 1.2 to get an idea of sample size**

<table>
<thead>
<tr>
<th>Difference between prevalences</th>
<th>Population prevalence 50%</th>
<th>Population prevalence 25%</th>
<th>Population prevalence 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power</td>
<td>Power</td>
<td>Power</td>
</tr>
<tr>
<td>5%</td>
<td>1041</td>
<td>1287</td>
<td>883</td>
</tr>
<tr>
<td>10%</td>
<td>253</td>
<td>312</td>
<td>240</td>
</tr>
<tr>
<td>15%</td>
<td>107</td>
<td>132</td>
<td>113</td>
</tr>
<tr>
<td>20%</td>
<td>56</td>
<td>69</td>
<td>66</td>
</tr>
<tr>
<td>25%</td>
<td>32</td>
<td>39</td>
<td>43</td>
</tr>
<tr>
<td>30%</td>
<td>19</td>
<td>24</td>
<td>29</td>
</tr>
</tbody>
</table>

Table 1.2 Comparing a sample with a known population

The table gives sample sizes for 90% and 95% power in three situations: when the population prevalence is 50%, 25% and 10%.

If in doubt about the prevalence, err on the high side.

*Sample Stata code for column

```
. power oneproportion .1 (.15(.85).4), test(wald) power(.95)
```

Sample Size: studies measuring a percentage or proportion
Example: Study investigating whether depression is more common in elderly people in nursing homes than in the general elderly population, using a limited number of available patients.

Depression has a prevalence of roughly 10% in the general elderly population. There are approximately 70 persons two nursing homes who will all be invited to participate in the research. A sample size of 70 would give the study approximately 95% power to detect a 20% higher prevalence of depression in these participants compared with the general population.

Example: Study recruiting patients with low HDL cholesterol levels to see if there is a higher frequency of an allele suspected of being involved in low HDL. The population frequency of the allele is known to be 25%.

The researchers decide that to be clinically significant, the prevalence of the allele would have to be twice as high in patients with low HDL cholesterol. A sample of 36 patients will give them a 90% chance of detecting a difference this big or bigger, while 45 patients will give them a 95% chance of detecting it.

Reference

These calculations were carried out using Stata Version 13 using the power command.

1.3 Sample sizes for studies comparing proportions between two groups

This section give guidelines for sample sizes for studies that measure the proportion or percentage of people who have some characteristic with the intention of comparing two groups sampled separately, or two subgroups within the same sample.

This is a frequent study design in which two groups are compared. In some cases, the two groups will be got by taking samples from two populations. However, in many cases the two groups may actually be subgroups of the same sample. If you plan on comparing two groups within the same sample, the sample size will have to be increased. Instructions for doing this are at the end of the section.

Step 1: Decide on the difference the study should be capable of detecting

You will have to decide what is the smallest difference between the two groups that you are studying that would constitute a 'clinically significant difference' - that is, a difference that would have real-life implications. If you found a difference of 5%, would that have real-life implications? If not, would 10%? There is a certain amount of guesswork involved, and you might do well to see what the norm was in the literature.

Step 2: How common is the feature that you are studying in the comparison group?

Sample sizes are bigger when the feature has a prevalence of 50% in one of the groups. As the prevalence in one group goes towards 0% or 100%, the sample size requirement falls. If you do not know how common the feature is, you should use the sample size for a 50% prevalence as being the worst-case estimate. The required sample size will be no larger than this no matter what the prevalence turns out to be.

Step 3: what power do you want to detect a difference between the two groups?

A study with 90% power is 90% likely to discover the difference between the groups if such a difference exists. And 95% power increases this likelihood to 95%. So if a study with 95% power fails to detect a difference, the difference is unlikely to exist. You should aim for 95% power, and certainly accept nothing less than 90% power. Why run a study that has more than a 10% chance of failing to detect the very thing it is looking for?
Step 4: Use table 1.3 to get an idea of sample size
The table gives sample sizes for 90% and 95% power in three situations: when the prevalence in the comparison group is 50%, 25% and 10%. If in doubt, err on the high side. The table shows the number in each group, so the total number is twice the figure in the table!

<table>
<thead>
<tr>
<th>Difference between the groups</th>
<th>Prevalence in one group 50%</th>
<th>Prevalence in one group 25%</th>
<th>Prevalence in one group 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power</td>
<td>Power</td>
<td>Power</td>
</tr>
<tr>
<td>5%</td>
<td>2095</td>
<td>2590</td>
<td>1674</td>
</tr>
<tr>
<td>10%</td>
<td>519</td>
<td>641</td>
<td>440</td>
</tr>
<tr>
<td>15%</td>
<td>227</td>
<td>280</td>
<td>203</td>
</tr>
<tr>
<td>20%</td>
<td>124</td>
<td>153</td>
<td>118</td>
</tr>
<tr>
<td>25%</td>
<td>77</td>
<td>95</td>
<td>77</td>
</tr>
<tr>
<td>30%</td>
<td>52</td>
<td>63</td>
<td>54</td>
</tr>
</tbody>
</table>

Table 1.3 Numbers needed in each group

*Sample Stata command
```
.power twoproportion .5 (.45(-.05).2), power(.9)
```

Example: Study investigating the effect of a pre-discharge treatment programme on rate of readmission
The investigator is planning a study of the effect of a telephone support line in improving smoking quit rates in patients post-strike. She knows that about 25% of smokers will have quit at the end of the first year after discharge. She feels that the support line would make a clinically important contribution to management if it improved this to 35%. The programme would not be justifiable from the cost point of view if the reduction were smaller than this. So a 10% increase is the smallest effect that would be clinically significant.

From the table she can see that two groups of 440 patients would be needed to have a 90% power of detecting a difference of at least 10%, and two groups of 543 patients would be needed for 95% power. She writes in her ethics submission:

Sample Size: comparing proportions between groups

Previous studies in the area suggest that as few as 25% of smokers are still not smoking a year after discharge. The proposed sample size of 500 patients in each group (intervention and control) will give the study a power to detect a 10% increase in smoking cessation rate that is between 90% and 95%.

Example: Study comparing risk of hypertension in women who continue to work and those who stop working during a first pregnancy.
Women in their first pregnancy have roughly a 10% risk of developing hypertension. The investigator wishes to compare risk in women who stop working and women who continue. She decides to give the study sufficient power to have a 90% chance of detecting a doubling of risk associated with continued working. The sample size, from the table, is two groups of 266 women. She decides to increase this to 300 in each group to account for dropouts. She writes in her ethics submission:

Women in their first pregnancy have roughly a 10% risk of developing hypertension. We propose to recruit 300 women in each group (work cessation and working). The proposed sample size has a 90% power to detect a twofold increase in risk, from 10% to 20%.

Comparing subgroups within the same sample
This often happens when the two groups being compared are subgroups of a larger sample. For example, if you are comparing men and women coronary patients and you know that two thirds of patients are men.

A detailed answer is beyond the scope of a ready-reckoner table, because the final sample size will depend on the relative sizes of the groups being compared. Roughly, if one group is twice as big as the other, the total sample size will be 20% higher, if one is three times as big as the other, 30% higher. In the case of the coronary patients, if two thirds of patients are men, one group will be twice the size of the other. In this case, you would calculate a total sample size based on the table and then increase it by 20%.

Frequently-asked questions
What is 90% or 95% power?
Just because a difference really exists in the population you are studying does not mean it will appear in every sample you take. Your sample may not show the difference, even though it is there. To be ethical and value for money, a research study should have a reasonable chance of detecting the smallest difference that would be of clinical significance (if this difference actually exists, of course). If you do a study and fail to find a difference, even though it exists, you may discourage further research, or delay the discovery of something useful. For this reason, you study should have a reasonable chance of finding a difference, if such a difference exists.

Sample Size: comparing proportions between groups
A study with 90% power is 90% likely to discover the difference between the groups if such a difference exists. And 95% power increases this likelihood to 95%. So if a study with 95% power fails to detect a difference, the difference is unlikely to exist. You should aim for 95% power, and certainly accept nothing less than 90% power. Why run a study that has more than a 10% chance of failing to detect the very thing it is looking for?

**What if I can only study a certain number of people?**

You can use the table to get a rough idea of the sort of difference you study might be able to detect. Look up the number of people you have available.

**Reference**

These calculations were carried out using Stata release 13 `power` command.

### 1.4 Sample sizes for population case-control studies

This section give guidelines for sample sizes for studies that measure the effect of a risk factor by comparing a sample of people with the disease with a control sample of disease-free individuals. The effect of the risk factor is measured using the odds ratio.

A case-control study looks for risk factors for a disease or disorder by recruiting two groups of participants: cases of the disease or disorder, and controls, who are drawn from the same population as the cases but who did not develop the disease.

Case-control studies are **observational studies**. In experimental studies, we can hold conditions constant so that the only difference between the two groups we are comparing is that one was exposed to the risk factor and one was not. In observational studies, however, there can be other differences between those exposed to the risk factor and those not exposed. For example, if you are looking at the relationship between diarrhoeal disease in children and household water supply, households with high quality water will differ in other ways from households with low quality water. They are more likely to be higher social class, wealthier, and more likely to have better sanitation. These factors, which are associated with both the disease and the risk factor, are called **confounding factors**.

Understanding confounding factors is important in designing and analysing case-control studies. Confounding factors can distort the apparent relationship between a risk factor and a disease, so their effects have to be adjusted for statistically during the analysis. In the diarrhoeal disease example, you might need to adjust your estimate of the effect of good water quality in the household for the association between good water quality and presence of a toilet. Any case-control study must identify and measure potential confounding factors.

Allowing for confounding factors in the analysis of case-control studies increases the required sample size, because the statistical adjustment will increase the margin of uncertainty around the estimate of the risk factor's odds ratio. If you don't understand the last bit, don't worry. The important thing is that you have to gather extra data in a case control study to allow you sufficient statistical power to adjust for confounding variables. How much extra data depends on how strongly the confounding factor is associated with the risk factor and the disease. Cousens and colleagues recommend increasing the sample size by 25%, based on simulation studies. The tables in this section are inflated by 25% to allow for this.
**Step 1: What is the probable prevalence of the risk factor in your population?**

The prevalence of the risk factor will affect your ability to detect its effect. If most of the population is exposed to the risk factor, it will be common in your control group, making it hard to detect its effect, for example. If you are unsure about the prevalence of the risk factor in the population, err on the extreme side – that is, if it is rare, use the lowest estimate you have as the basis for calculations, and if it is common use the highest estimate.

**Step 2: What is the smallest odds ratio that would be regarded as clinically significant?**

The odds ratio expresses the impact of the factor on the risk of the disease or disorder. Usually we are only interested in risk factors that have a sizeable impact on risk – and odds ratio of 2, for example – but if you are studying a common, serious condition you might be interested in detecting an odds ratio as low as 1.5, because even a 50% increase in risk of something common or serious will be important at the public health level.

**Step 3: What statistical power do you want?**

With 90% power, you have a 90% chance of being able to detect a clinically significant odds ratio. That is, though, a 10% chance of doing the study and failing to detect it. With 95% power, you have only a 5% chance of failing to detect a clinically significant odds ratio, if it exists.

**Step 4: Look up the number of cases from table 1.4**

<table>
<thead>
<tr>
<th>Prevalence of the risk factor</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>1581</td>
<td>493</td>
<td>264</td>
<td>175</td>
<td>103</td>
<td>73</td>
<td>33</td>
</tr>
<tr>
<td>20%</td>
<td>929</td>
<td>300</td>
<td>165</td>
<td>113</td>
<td>69</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>30%</td>
<td>739</td>
<td>246</td>
<td>140</td>
<td>98</td>
<td>61</td>
<td>46</td>
<td>26</td>
</tr>
<tr>
<td>40%</td>
<td>674</td>
<td>231</td>
<td>134</td>
<td>95</td>
<td>63</td>
<td>49</td>
<td>29</td>
</tr>
<tr>
<td>50%</td>
<td>674</td>
<td>239</td>
<td>141</td>
<td>103</td>
<td>69</td>
<td>55</td>
<td>34</td>
</tr>
<tr>
<td>60%</td>
<td>730</td>
<td>265</td>
<td>161</td>
<td>118</td>
<td>81</td>
<td>65</td>
<td>43</td>
</tr>
<tr>
<td>70%</td>
<td>869</td>
<td>324</td>
<td>200</td>
<td>149</td>
<td>105</td>
<td>85</td>
<td>58</td>
</tr>
<tr>
<td>80%</td>
<td>1184</td>
<td>453</td>
<td>284</td>
<td>215</td>
<td>154</td>
<td>128</td>
<td>88</td>
</tr>
<tr>
<td>90%</td>
<td>2186</td>
<td>855</td>
<td>546</td>
<td>416</td>
<td>304</td>
<td>254</td>
<td>180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prevalence of the risk factor</th>
<th>90% Power to detect the odds ratio</th>
<th>95% Power to detect the odds ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>2749</td>
<td>1075</td>
</tr>
<tr>
<td>20%</td>
<td>1489</td>
<td>569</td>
</tr>
<tr>
<td>30%</td>
<td>1091</td>
<td>408</td>
</tr>
<tr>
<td>40%</td>
<td>848</td>
<td>300</td>
</tr>
<tr>
<td>50%</td>
<td>919</td>
<td>334</td>
</tr>
<tr>
<td>60%</td>
<td>848</td>
<td>300</td>
</tr>
<tr>
<td>70%</td>
<td>929</td>
<td>300</td>
</tr>
<tr>
<td>80%</td>
<td>730</td>
<td>265</td>
</tr>
<tr>
<td>90%</td>
<td>674</td>
<td>239</td>
</tr>
</tbody>
</table>
Example: A study to detect the effect of smoking on insomnia in elderly.
Step 1 is to estimate how common smoking is in the elderly. The current population estimate is that about 27% of the elderly smoke.
Step 2 is to specify the minimum odds ratio that would be clinically significant. In this case, we might decide that an odds ratio of 2.5 would be the smallest one that would be of real importance.
The table gives a sample size of 140 cases and 140 controls for 90% power to detect an odds ratio of at least 2.5 with a smoking prevalence of 30%. This is probably close enough to 27% to be taken as it is.
When analysing the data, the effect of smoking may be confounded by the fact that smoking is more common in men, and insomnia is also more common in men. So the apparent relationship between insomnia and smoking could be partly due to the fact that both are associated with male sex. We can adjust the odds ratio for sex, and for other confounding factors during the analysis.
Although this will reduce the study power, the sample size table has a built-in allowance of 25% extra to deal with the loss of power due to confounding.
In an ethics submission, you would write
The sample size was calculated in order to have 90% power to detect an odds ratio of 2.5 or greater associated with smoking, given that the prevalence of smoking is approximately 30% in the target population. The sample size was inflated by 25% to allow for the calculation of an odds ratio adjusted for confounding variables such as gender, giving a planned sample size of 140 cases and 140 controls.

Frequently-asked questions
I only have 30 cases available to me – what can I do?
Looking at the table, it is clear that you cannot do a lot. You have a 90% chance of detecting a ten-fold increase in risk associated with a risk factor that is present in at least 20% of the population and at most 40%. Sample sizes for case-control studies are generally larger than people think, so it’s a good idea to look at the table and consider whether you have enough cases to go ahead.
Is there any way I can increase the power of my study by recruiting more controls?
Yes. If you have a limited number of cases, you can increase the power of your study by recruiting more controls.
Step 1: Look up the number of cases you need from table 1.4
Step 2: Use table 1.5 to look up an adjustment factor based on the number of controls per case that you plan on recruiting. Multiply the original number of cases by the adjustment factor.
Step 3: the number of controls you require is based on this adjusted number.

Example: An obstetrician is interested in the relationship between manual work during pregnancy and risk of pre-eclampsia. She does some preliminary research and finds that about 20% of her patients do manual work during their pregnancy. She is interested in being able to detect an odds ratio of 3 or more associated with manual work. Since pre-eclampsia is comparatively rare, she plans to recruit three controls for each case.

<table>
<thead>
<tr>
<th>Number of controls per case</th>
<th>Multiply the number of cases by</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.75</td>
</tr>
<tr>
<td>3</td>
<td>0.67</td>
</tr>
<tr>
<td>4</td>
<td>0.63</td>
</tr>
<tr>
<td>5</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Table 1.4a Effect of multiple controls per case on sample size

From table 1.4, she needs 113 patients with pre-eclampsia for 90% power. Recruiting three controls per case, she can reduce this by a third (0.67), giving 113 x 0.67 = 75.7 cases (76 in round figures). However, she will have to recruit three controls per case, giving 228 controls (76 x 3). Although this is pretty close to the size of study she would have had to do with a 1:1 case-control ratio, it will be quicker to carry out, because recruiting the cases will be the slowest part of the study.

Reference
The calculations in this section were carried out with Stata, based on formulas in Cousens SN, Feachem RG, Kirkwood B, Mertens TE and Smith PG. Case-control studies of childhood diarrhoea: II Sample size. World Health Organization. CDD/EDP/88.3 Undated.
1.5 Sample size for logistic regression with a continuous predictor variable

This section gives guidelines for sample sizes for studies that measure the effect of a continuous predictor (for example, body mass index) on the risk of an endpoint (for example ankle injury). The data may come from a cross-sectional, case-control or cohort study.

Introduction

Logistic regression allows you to calculate the effect that a predictor variable has on the occurrence of an outcome. It can be used with cross-sectional data, case-control data and longitudinal (cohort) data. The effect of the predictor variable is measured by the odds ratio. A researcher may be interested, for example, on the effect that body weight has on the probability of a patient not having a complete clinical response to a standard 70mg dose of enteric aspirin, or the effect that depression scores have on the probability that the patient will not adhere to prescribed treatment.

Step 1: Find out the mean and standard deviation of the predictor variable

You will probably be able to estimate the mean value quite easily. If you cannot find an estimate for the standard deviation, you can use the rule of thumb that the typical range of the variable is four standard deviations. By asking yourself what an unusually low and an unusually high value would be, you can work out the typical range. Dividing by four gives a rough standard deviation.

For example, adult weight averages at about 70 kilos, and weights under 50 or over 100 would be unusual, so the ‘typical range’ is about 50 kilos. This gives us a ‘guesstimate’ standard deviation of 12.5 kilos (50÷4).

Step 2: What is the probability of the outcome at the average value of the predictor?

A good rule of thumb is that the probability of the outcome at the average value of the predictor is the same as the probability of the outcome in the whole sample. So if about 20% of patients have poor adherence to prescribed treatment, this will do as an estimate of the probability of poor adherence at the average value of the predictor.

Step 3: What is the smallest increase in the probability of the outcome associated with an increase of one standard deviation of the predictor that would be clinically significant?

Clinical significance, or real-life significance, means that an effect is important enough to have real-life consequences. In the case of treatment failure with aspirin, if the probability of treatment failure increased from 10% at the average weight to 25% one standard deviation higher, it would certainly be of clinical importance. Would an increase from 10% to 20% be clinically important? Probably. But any smaller increase probably would not. So in this case, we would set 10% and 20% as the prevalence at the mean and the smallest increase the be detected one standard deviation higher.

Step 4: Read off the required sample size from the table.

Table 1.5 Sample size for logistic regression

<table>
<thead>
<tr>
<th>Prevalence at mean value</th>
<th>Prevalence 1 SD higher</th>
<th>Odds ratio</th>
<th>N for 90% power</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>10%</td>
<td>2.1</td>
<td>333</td>
</tr>
<tr>
<td>10%</td>
<td>15%</td>
<td>1.6</td>
<td>484</td>
</tr>
<tr>
<td>10%</td>
<td>20%</td>
<td>2.3</td>
<td>172</td>
</tr>
<tr>
<td>20%</td>
<td>25%</td>
<td>1.3</td>
<td>734</td>
</tr>
<tr>
<td>20%</td>
<td>30%</td>
<td>1.7</td>
<td>220</td>
</tr>
<tr>
<td>20%</td>
<td>40%</td>
<td>2.7</td>
<td>98</td>
</tr>
<tr>
<td>20%</td>
<td>50%</td>
<td>4.0</td>
<td>143</td>
</tr>
<tr>
<td>25%</td>
<td>30%</td>
<td>1.3</td>
<td>825</td>
</tr>
<tr>
<td>25%</td>
<td>35%</td>
<td>1.6</td>
<td>238</td>
</tr>
<tr>
<td>25%</td>
<td>40%</td>
<td>2.0</td>
<td>128</td>
</tr>
<tr>
<td>25%</td>
<td>50%</td>
<td>3.0</td>
<td>93</td>
</tr>
<tr>
<td>30%</td>
<td>35%</td>
<td>1.3</td>
<td>889</td>
</tr>
<tr>
<td>30%</td>
<td>40%</td>
<td>1.6</td>
<td>249</td>
</tr>
<tr>
<td>30%</td>
<td>50%</td>
<td>2.3</td>
<td>93</td>
</tr>
<tr>
<td>30%</td>
<td>60%</td>
<td>3.5</td>
<td>106</td>
</tr>
<tr>
<td>40%</td>
<td>45%</td>
<td>1.2</td>
<td>933</td>
</tr>
<tr>
<td>40%</td>
<td>50%</td>
<td>1.5</td>
<td>250</td>
</tr>
<tr>
<td>40%</td>
<td>60%</td>
<td>2.3</td>
<td>87</td>
</tr>
<tr>
<td>40%</td>
<td>80%</td>
<td>6.0</td>
<td>499</td>
</tr>
<tr>
<td>50%</td>
<td>55%</td>
<td>1.2</td>
<td>865</td>
</tr>
<tr>
<td>50%</td>
<td>60%</td>
<td>1.5</td>
<td>225</td>
</tr>
<tr>
<td>50%</td>
<td>75%</td>
<td>3.0</td>
<td>81</td>
</tr>
<tr>
<td>50%</td>
<td>80%</td>
<td>4.0</td>
<td>133</td>
</tr>
</tbody>
</table>

Reference: These calculations were carried out using the powerlog command written for Stata by Philip B. Ender, UCLA Academic Technology Services.
1.6 Sample sizes for logistic or Cox regression with multiple predictors

This section reviews guidelines on the number of cases required for studies in which logistic regression or Cox regression are used to measure the effects of risk factors on the occurrence of an endpoint. Earlier recommendations stated that you needed ten events (endpoints) per predictor variable. More recent work has shown that this isn’t strictly true, and that 5–9 events per predictor may be yield estimates that are just as good. The section includes guidelines on designing studies with multiple predictors.

Introduction

Logistic regression builds a model to estimate the probability of an event occurring. To use logistic regression, we need data in which each subject’s status is known: the event of interest has either occurred or has not occurred. For example, we might be analysing a case-control study of stress fractures in athletes. Stress fractures are either present (in the cases) or absent (in the controls). We can use logistic regression to analyse the data.

However, in follow-up studies, we often have data on people who might experience the event but they have not experienced it yet. For example, in a cancer follow-up study, some patients have experienced a recurrence of the disease, while others are still being followed up and are disease free. We cannot say that those who are disease free will not recur, but we know that their time to recurrence must be greater than their follow-up time.

In this case, we can use Cox regression (sometimes called a proportional hazards general linear model, which is what Cox himself called it. You can see why people refer to it as Cox regression!).

Ten events per predictor – or not?

There was a very influential paper published in the 1990s by Peduzzi et al (1996) based on simulation studies which concluded that for logistic regression you needed ten events (not patients) per predictor variable if you were calculating a multivariate model.

Example: a researcher wants to look at factors affecting the development of hypertension in first-time pregnancies. If the researcher has 5 explanatory variables, they will need to recruit a sample big enough to yield 50 cases of hypertension. Around 20% of first-time mothers will develop hypertension, so these 50 cases will be 20% of the required sample. So a total sample of 250 will be required so that there will be the required 50 cases.
More recent research has cast doubt on this. More recently, bigger and more comprehensive simulation studies have cast doubt on this hard-and-fast rule. Vittinghoff and McCulloch (2007), in a very widely-cited paper, concluded that “problems are fairly frequent with 2–4 events per predictor variable, uncommon with 5–9 events per predictor variable, and still observed with 10–16 events per predictor variable. Cox models appear to be slightly more susceptible than logistic. The worst instances of each problem were not severe with 5–9 events per predictor variable and usually comparable to those with 10–16 events per predictor variable.”

In other words, with between 5 and 9 events per predictor variable, models performed more or less as well as models with 10-16 events per variable. As a safe minimum, then, it appears that there should be at least 5 events per predictor variable, and setting a sample size to capture more than 10 events per predictor variable is not a good use of research funds.

Correlated predictors - a potential source of problems

One consideration needs to be mentioned: correlations between your predictor variables. If your predictor variables are uncorrelated, the required sample size will be smaller than if they are correlated. And the stronger the correlation, the larger the required sample size. Courvoisier (2011) points out that the size of the effect associated with the predictor and the correlations between the predictors all affect the statistical power of a study.

One solution to the problem is to design the analysis carefully.

1. Choose predictor variables based on theory, not availability. It is better to use a small set of predictors that test an interesting hypothesis than to have a large number of predictors that were chosen simply because the data were there.
2. Make sure that predictors don’t overlap. If you put education and social class into a prediction model, they measure overlapping constructs. The well-educated tend to have higher social class. Does your hypothesis really state that the two constructs have different effects? Choose one good measure of each construct rather than having multiple overlapping measures.

Frequently asked questions

That’s all very well but I have only 80 patients

That’s health research. I worked on what was, at the time, one of the world’s largest studies of a rare endocrine disorder. It has 16 patients. We are often faced with a lack of participants because we are dealing with rare problems or rare events. In such a case, we do what we can. What this section is warning is

References

Courvoisier, D.S. et al., 2011. Performance of logistic regression modeling: beyond the number of events per variable, the role of data structure. Journal of Clinical Epidemiology, 64(9), pp.993-1000.


2: Sample sizes and powers for comparing two means where the variable is measured on a continuous scale that is (more or less) normally distributed.

This section gives guidelines for sample sizes for studies that measure the difference between the means of two groups, or that compare the means of the same group measured under two different conditions (often before and after an intervention).

2.1 Comparing the means of two groups

Studies frequently compare a group of interest with a control group or comparison group. If your study involved measuring something on the same people twice, once under each of two conditions, you need the next section.

Step 1: decide on the difference that you want to be able to detect and express it in standard deviation units.

The first step in calculating a sample size is to decide on the smallest difference between the two groups that would be 'clinically significant' or 'scientifically significant'. For example, a difference in birth weight of 250 grammes between babies whose mothers smoked and babies whose mothers did not smoke would be certainly regarded as clinically significant, as it represents the weight gain of a whole week of gestation. However, a smaller difference might not be.

It is hard to define the smallest difference that would be clinically significant. An element of guesswork is involved. What is the smallest reduction in cholesterol that would be regarded as clinically worthwhile? It may be useful to search the literature and see what other investigators have done.

Effect size should not be based on your expectations!

Note, however, that the sample size depends on the smallest clinically significant difference, not on the size of the difference you expect to find. You may have high hopes, but your obligation as a researcher is to give your study enough power to detect the smallest difference that would be clinically significant.

Step 2: Convert the smallest clinically significant difference to standard deviation units.

Step 2.1. What is the expected mean value for the control or comparison group?
Step 2.2. What is the standard deviation of the control or comparison group?

If you do not know this exactly, you can get a reasonable guess by identifying the highest and lowest values that would typically occur. Since most values will be within ±2 standard deviations of the average, then the highest typical value (2 standard deviations above average) and lowest typical value (2 below) will span a range of four standard deviations. An approximate standard deviation is therefore...
Approximate SD = \frac{\text{Highest typical value} - \text{Lowest typical value}}{4}

For example: a researcher is measuring foetal heart rate, to see if mothers who smoke have babies with slower heart rates. A typical rate is 160 beats per minute, and normally the rate would not be below 135 or above 175. The variation in 'typical' heart rates is 175–135 = 30 beats. This is about 4 standard deviations, so the standard deviation is about 7.5 beats per minute. (This example is real, and the approximate standard deviation is pretty close to the real one!)

**Step 3. What is the smallest difference between the two groups in the study that would be considered of scientific or clinical importance.**

This is the minimum difference which should be detectable by the study. You will have to decide what is the smallest difference between the two groups that you are studying that would constitute a 'clinically significant difference' - that is, a difference that would have real-life implications.

In the case of the foetal heart rate example, a researcher might decide that a difference of 5 beats per minute would be clinically significant.

Note again that the study should be designed to have a reasonable chance of detecting the minimum clinically significant difference, and not the difference that you think is actually there.

**Step 4. Convert the minimum difference to be detected to standard deviation units by dividing it by the standard deviation**

Following our example, the minimum difference is 5 beats, and the standard deviation is 7.5 beats. The difference to be detected is therefore two thirds of a standard deviation (0.67)

**Step 5: Use Table 2.1 to get an idea of the number of participants you need in each group to detect a difference of this size.**

Following the example, the nearest value in the table to 0.67 is 0.7. The researcher will need two groups of 43 babies each to have a 90% chance of detecting a difference of 5 beats per minute between smoking and non-smoking mothers' babies. To have a 95% chance of detecting this difference, the researcher will need 54 babies in each group.

<table>
<thead>
<tr>
<th>Difference to be detected (SD units)</th>
<th>N in each group 90% power</th>
<th>N in each group 95% power</th>
<th>Chance that someone in group 1 will score higher than someone in group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
<td>7</td>
<td>92%</td>
</tr>
<tr>
<td>1.5</td>
<td>10</td>
<td>12</td>
<td>86%</td>
</tr>
<tr>
<td>1.4</td>
<td>11</td>
<td>14</td>
<td>84%</td>
</tr>
<tr>
<td>1.3</td>
<td>13</td>
<td>16</td>
<td>82%</td>
</tr>
<tr>
<td>1.25</td>
<td>14</td>
<td>17</td>
<td>81%</td>
</tr>
<tr>
<td>1.2</td>
<td>15</td>
<td>19</td>
<td>80%</td>
</tr>
<tr>
<td>1.1</td>
<td>18</td>
<td>22</td>
<td>78%</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>26</td>
<td>76%</td>
</tr>
<tr>
<td>0.9</td>
<td>26</td>
<td>33</td>
<td>74%</td>
</tr>
<tr>
<td>0.8</td>
<td>33</td>
<td>41</td>
<td>71%</td>
</tr>
<tr>
<td>0.75</td>
<td>38</td>
<td>47</td>
<td>70%</td>
</tr>
<tr>
<td>0.7</td>
<td>43</td>
<td>54</td>
<td>69%</td>
</tr>
<tr>
<td>0.6</td>
<td>59</td>
<td>73</td>
<td>66%</td>
</tr>
<tr>
<td>0.5</td>
<td>85</td>
<td>104</td>
<td>64%</td>
</tr>
<tr>
<td>0.4</td>
<td>132</td>
<td>163</td>
<td>61%</td>
</tr>
<tr>
<td>0.3</td>
<td>234</td>
<td>289</td>
<td>58%</td>
</tr>
<tr>
<td>0.25</td>
<td>337</td>
<td>416</td>
<td>57%</td>
</tr>
<tr>
<td>0.2</td>
<td>526</td>
<td>650</td>
<td>55%</td>
</tr>
</tbody>
</table>

Numbers required for comparing the mean values of two groups

If you intend using the Wilcoxon Mann-Whitney test, multiply the sample size by 1.16

**Frequently-asked questions**

*What is 90% or 95% power?*

Just because a difference really exists in the population you are studying does not mean it will appear in every sample you take. Your sample may not show the difference, even though it is there. To be ethical and value for money, a research study should have a reasonable chance of detecting the smallest difference that would be of clinical significance (if this difference actually exists, of course). If you do a study and fail to find a difference, even though it exists, you may discourage further research, or delay the discovery of
A study with 90% power is 90% likely to discover the difference between the groups if such a difference exists. And 95% power increases this likelihood to 95%. So if a study with 95% power fails to detect a difference, the difference is unlikely to exist. You should aim for 95% power, and certainly accept nothing less than 90% power. Why run a study that has more than a 10% chance of failing to detect the very thing it is looking for?

How do I interpret the column that shows the chance that a person in one group will have a higher score than a person in another group?

Some scales have measuring units that are hard to imagine. We can imagine foetal heart rate, which is in beats per minute, but how do you imagine scores on a depression scale? What constitutes a ‘clinically significant’ change in depression score?

One way of thinking of differences between groups is to ask what proportion of the people in one group have scores that are higher than average for the other group. For example we could ask what proportion of smoking mothers have babies with heart rates that are below the average for non-smoking mothers? Continuing the example, if we decide that a difference of 5 beats per minute is clinically significant (which corresponds to just about 0.7 SD), this means that there is a 69% chance that a non-smoking mother’s baby will have a higher heart rate than a smoking mother’s baby. (Of course, if there is no effect of smoking on heart rate, then the chances are 50% – a smoking mother’s baby is just as likely to have higher heart rate as a lower heart rate).

This information is useful for planning clinical trials. We might decide that a new treatment would be superior if 75% of the people would do better on it. (If it was just the same, then 50% of people would do better and 50% worse.) This means that the study needs to detect a difference of about 1 standard deviation (from the table). And the required size is two groups of 26 people for 95% power.

The technical name for this percentage, incidentally, is the Mann-Whitney statistic.

I have a limited number of potential participants. How can I find out power for a particular sample size?

You may be limited to a particular sample size because of the limitations of your data. There may only be 20 patients available, or your project time scale only allows for collecting data on a certain number of participants. You can use the table to get a rough idea of the power of your study. For example, with only 20 participants in each group, you have more than 95% power to detect a difference of 1.25 standard deviations (which only needs two groups of 17) and slightly less than 90% power to detect a difference of 1 standard deviation (you would really need 2 groups of 22).

But what if the difference between the groups is bigger than I think?

Sample sizes are calculated to detect the smallest clinically significant difference. If the difference is greater than this, the study’s power to detect it is higher. For instance, a study of two groups of 43 babies has a 90% power to detect a difference of 0.7 standard deviations, which corresponded (roughly) to 5 beats per minute, the smallest clinically significant difference. If the real difference were bigger - say, 7.5 beats per minute (1 standard deviation) then the power of the study would actually be 99.6%. (This is just an example, and I had to calculate this power specifically; it’s not in the table.) So if your study has adequate power to detect the smallest clinically significant difference, it has more than adequate power to detect bigger differences.

I intend using a Wilcoxon (Mann Whitney) test because I don’t think my data will be normally distributed

The first important point is that the idea that the data should be normally distributed before using a t-test, or linear regression, is a myth. It is the measurement errors that need to be normally distributed. But even more important, studies with non-normal data have shown that the t-test is extremely robust to departures from normality (Fagerland, 2012; Fagerland, Sandvik, & Mowinckel, 2011; Rasch & Teuscher, 2007).

A second persistent misconception is that you cannot use the t-test on small samples (when pressed, people mutter something about “less than 30” but aren’t sure). Actually, you can. And the t-test performs well in samples as small as N=2! (J. de Winter, 2013) Indeed, with very small samples indeed, the Wilcoxon-Mann Whitney test is unable to detect a significant difference, while the t-test is (Altman & Bland, 2009).

Relative to a t-test or regression, the Wilcoxon test (also called the Mann Whitney U test) can be less efficient, especially if your data are close to normally distributed. However, a statistician called Pitman showed that the test was never less than 86.4% as efficient. So inflating your sample by 1.16 should give you at least the same power that you would have using a t-test with normally distributed data.

My data are on 5-point Likert scales and my supervisor says I cannot use a t-test because my data are ordinal

Simulation studies comparing the t-test and the Wilcoxon Mann-Whitney test on items scored on 5-point scales have given heartening results. In most scenarios, the two tests had a similar power to detect differences between groups. The false-positive error rate for both tests was near to 5% for most situations, and never higher than 8% in even the most extreme situations. However, when the
samples differed markedly in the shape of their score distribution, the Wilcoxon Mann-Whitney test outperformed the t-test (J. C. de Winter & Dodou, 2010).

**References and useful reading**

These calculations were carried out using Stata release 12


2.2 Sample sizes for comparing means in the same people under two conditions

One common experimental design is to measure the same thing twice, once under each of two conditions. This sort of data are often analysed with the paired t-test. However, the paired t-test doesn’t actually use the two values you measured; it subtracts one from the other and gets the average difference. The null hypothesis is that this average difference is zero.

Likewise, sample size for paired measurements doesn’t involve specifying the means for each condition but specifying the mean difference.

**Step 1: decide on the difference that you want to be able to detect.**

The first step in calculating a sample size is to decide on the smallest difference between the two measurements that would be ‘clinically significant’ or ‘scientifically significant’. For example, if you wanted to see how effective an exercise programme was in reducing weight in people who were overweight, you might decide that losing two kilos over the one-month trial period would be the minimum weight loss that would count as a ‘significant’ weight loss.

It is often hard to define the smallest difference that would be clinically significant. An element of guesswork in involved. What is the smallest reduction in cholesterol that would be regarded as clinically worthwhile? It may be useful to search the literature and see what other investigators have done.

**Effect size should not be based on your expectations!**

Note, however, that the sample size depends on the smallest clinically significant difference, not, on the size of the difference you expect to find.

**Step 2: Convert the smallest clinically significant difference to standard deviation units.**

**Step 2.1. What is the standard deviation of the differences?**

This is often very hard to ascertain. You may find some published data. Even if you cannot you can get a reasonable guess by identifying the biggest positive and biggest negative differences that would typically occur. The biggest positive difference is the biggest difference in the expected direction that would typically occur. The biggest negative difference is the biggest difference in the opposite direction that would be expected to occur. Since most values will be within ±2 standard deviations of the average, then the biggest positive difference (2 standard deviations above average) and biggest negative (2 below) will span a range of four standard deviations. An approximate standard deviation is therefore
Approximate SD of differences = \frac{\text{Biggest typical positive difference} - \text{Biggest typical negative difference}}{4}

For example: though we are hoping for at least a two kilo weight loss following exercise, some people may lose up to five kilos. However, others might actually gain as much as a kilo, perhaps because of the effect of exercise on appetite. So the change in weight can vary from plus five kilos to minus one, a range of six kilos. The standard deviation is a quarter of that range: one and a half kilos.

*Step 2.2. Convert the minimum difference to be detected to standard deviation units by dividing it by the standard deviation*

<table>
<thead>
<tr>
<th>Minimum difference to be detected (SD units)</th>
<th>N required for 90% power</th>
<th>N required for 95% power</th>
<th>Percentage of people who will change in the hypothesised direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>98%</td>
</tr>
<tr>
<td>1.5</td>
<td>5</td>
<td>6</td>
<td>93%</td>
</tr>
<tr>
<td>1.4</td>
<td>6</td>
<td>7</td>
<td>92%</td>
</tr>
<tr>
<td>1.3</td>
<td>7</td>
<td>8</td>
<td>90%</td>
</tr>
<tr>
<td>1.25</td>
<td>7</td>
<td>9</td>
<td>89%</td>
</tr>
<tr>
<td>1.2</td>
<td>8</td>
<td>10</td>
<td>88%</td>
</tr>
<tr>
<td>1.1</td>
<td>9</td>
<td>11</td>
<td>86%</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>13</td>
<td>84%</td>
</tr>
<tr>
<td>0.9</td>
<td>13</td>
<td>17</td>
<td>82%</td>
</tr>
<tr>
<td>0.8</td>
<td>17</td>
<td>21</td>
<td>79%</td>
</tr>
<tr>
<td>0.75</td>
<td>19</td>
<td>24</td>
<td>77%</td>
</tr>
<tr>
<td>0.7</td>
<td>22</td>
<td>27</td>
<td>76%</td>
</tr>
<tr>
<td>0.6</td>
<td>30</td>
<td>37</td>
<td>73%</td>
</tr>
<tr>
<td>0.5</td>
<td>43</td>
<td>52</td>
<td>69%</td>
</tr>
<tr>
<td>0.4</td>
<td>66</td>
<td>82</td>
<td>66%</td>
</tr>
<tr>
<td>0.3</td>
<td>117</td>
<td>145</td>
<td>62%</td>
</tr>
<tr>
<td>0.25</td>
<td>169</td>
<td>208</td>
<td>60%</td>
</tr>
<tr>
<td>0.2</td>
<td>263</td>
<td>325</td>
<td>58%</td>
</tr>
</tbody>
</table>

Sample sizes for studies which compare mean values on the same people measured under two different conditions

**Frequently-asked questions**

**What is 90% or 95% power?**

Just because a difference really exists in the population you are studying does not mean it will appear in every sample you take. Your sample may not show the difference, even though it is there. To be ethical and value for money, a research study should have a reasonable chance of detecting the smallest difference that would be of clinical significance (if this difference actually exists, of course). If you do a study and fail to find a difference, even though it exists, you may discourage further research, or delay the discovery of something useful. For this reason, you study should have a reasonable chance of finding a difference, if such a difference exists.
A study with 90% power is 90% likely to discover the difference between the two measurement conditions if such a difference exists. And 95% power increases this likelihood to 95%. So if a study with 95% power fails to detect a difference, the difference is unlikely to exist. You should aim for 95% power; and certainly accept nothing less than 90% power. Why run a study that has more than a 10% chance of failing to detect the very thing it is looking for?

**How do I interpret the column that shows the percentage of people who will change in the hypothesised direction?**

Some scales have measuring units that are hard to imagine. We can imagine foetal heart rate, which is in beats per minute, but how do you imagine scores on a depression scale? What constitutes a 'clinically significant' change in depression score?

One way of thinking of differences between groups is to ask what proportion of the people will change in the hypothesised direction. For example we could ask what proportion of depressed patients on an exercise programme would have to show improved mood scores before we would consider making the programme a regular feature of the management of depression. If we decide that a we would like to see improvements in at least 75% of patients, then depression scores have to fall by 0.7 standard deviation units. The sample size we need is 22 patients for 90% power, 27 for 95% power (the table doesn’t give 75%, I’ve used the column for 76%, which is close enough).

The technical name for this percentage, incidentally, is the Mann-Whitney statistic.

**I have a limited number of potential participants. How can I find out power for a particular sample size?**

You may be limited to a particular sample size because of the limitations of your data. There may only be 20 patients available, or your project time scale only allows for collecting data on a certain number of participants. You can use the table to get a rough idea of the power of your study. For example, with only 20 participants, you have more than 90% power to detect a difference of 0.75 standard deviations (which only needs two groups of 17) and slightly less than 95% power to detect a difference of 0.8 standard deviations (you would really need 21 participants).

**But what if the difference is bigger than I think?**

Sample sizes are calculated to detect the smallest clinically significant difference. If the actual difference is greater than this, the study’s power to detect it is higher.

**Reference**

These calculations were carried out using Stata release 12 **sampsi** command

### 2.3 Calculating sample sizes for comparing two means: a rule of thumb

**Sample size for comparing two groups**

Gerald van Belle gives a good rule of thumb for calculating sample size for comparing two groups. You do it like this:

1. Calculate the smallest difference between the two groups that would be of scientific interest.
2. Divide this by the standard deviation to convert it to standard deviation units (this is the same two steps as before)
3. Square the difference
4. For 90% power to detect this difference in studies comparing two groups, the number you need in each group will be: 

   \[
   \text{(Difference)}^2 \times \frac{1}{20} = 21
   \]

   Round up the answer to the nearest whole number.

5. For 95% power, change the number above the line to 26.

Despite being an approximation, this formula is very accurate.

**Studies comparing one mean with a known value**

If you are only collecting one sample and comparing their mean to a known population value, you may also use the formula above. In this case, the formula for 90% power is:

\[
\text{(Difference)}^2 \times \frac{1}{10} = 11
\]

Round up the answer to the nearest whole number.

For 95% power, replace the number 11 above the line by 13.

See the links page at the end of this guide for the source of these rules of thumb
3. Sample size for correlations or regressions between two variables measured on a numeric scale

This section gives guidelines for sample sizes for studies that measure the relationship between two numeric variables. Although these sample sizes are often based on correlations, they can also be applied to linear regression, and both types of measure are shown in the table.

**Introduction: correlation and regression**

Correlations are not widely used in medicine, because they are hard to interpret. On interpretation of a Pearson correlation ($r$) can be got by squaring it: this gives the proportion of variation in one variable that is linked to variation in another variable. For example, there is a correlation of 0.7 between illness-related stigma and depression, which means that just about half the variation in depression (0.49, which is $0.7^2$) is linked to variation in illness-related stigma.

Regressions are much more widely used, since they allow us to express the relationship between two variables in natural units – for example, the effect of a one-year increase in age on blood pressure. Because regressions are calculated in natural units, people often cite the proportion of variation shared between the two variables.

In fact, correlation is just an alternative form of reporting the results of a regression, so the p-value for a regression will be the same as the p-value for a Pearson correlation.

**Steps in calculating sample size for correlation or regression**

*Step 1: How much variation in one variable should be linked to variation in the other variable for the relationship to be clinically important?*

This is hard to decide, but it is hard to imagine a correlation being of ‘real life’ importance if less than 20% of the variation in one variable is linked to variation in the other variable.

*Step 2: Use the table to look up the corresponding correlation and sample size*

<table>
<thead>
<tr>
<th>% Shared variation</th>
<th>Correlation</th>
<th>Sample size 90% power</th>
<th>Sample size 95% power</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>0.32</td>
<td>99</td>
<td>121</td>
</tr>
<tr>
<td>15%</td>
<td>0.39</td>
<td>66</td>
<td>80</td>
</tr>
<tr>
<td>20%</td>
<td>0.45</td>
<td>48</td>
<td>59</td>
</tr>
<tr>
<td>25%</td>
<td>0.50</td>
<td>37</td>
<td>46</td>
</tr>
<tr>
<td>30%</td>
<td>0.55</td>
<td>30</td>
<td>37</td>
</tr>
<tr>
<td>35%</td>
<td>0.59</td>
<td>26</td>
<td>31</td>
</tr>
<tr>
<td>40%</td>
<td>0.63</td>
<td>22</td>
<td>27</td>
</tr>
<tr>
<td>45%</td>
<td>0.67</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>50%</td>
<td>0.71</td>
<td>16</td>
<td>20</td>
</tr>
</tbody>
</table>

**Reference**

These calculations were carried out using Adrian Mander’s Stata’s command `sampsi_rho`. 

Sample Size: correlation

39

Sample Size: correlation

40
4. Sample size for reliability studies

This section gives guidelines for sample sizes for studies that measure Cronbach’s alpha, an index of the reliability – strictly speaking the internal consistency – of a set of items designed to measure a trait. The topic of scale development is a complex one, so the section gives guidance on the methodology of analysis and the interpretation of alpha.

Introduction: An apology
I wish there were a simple answer to this problem, and there isn’t. Please read the following carefully.

Cronbach’s alpha
The reliability of a measurement scale is the degree to which all the items measure the same thing. Reliability is specific: it describes the performance of a scale in a specific population tested under specific conditions. So it is important to make sure that scales are reliable when used in realistic conditions with realistic participants.

In developing a new measurement scale, or showing that a measurement scale works in a new setting, it is useful to measure its reliability. Reliability is measured using Cronbach’s alpha coefficient, which is scaled between zero and one, with zero meaning that the items in the scale have nothing in common and one meaning that they are all perfectly correlated. In practice, it is wildly unlikely that anyone would develop a scale in which all the items were unrelated, so there is no point in testing whether your reliability is greater than zero. Instead, you have to specify a minimum value for the reliability coefficient.

Myths about Cronbach’s alpha
A mythology has grown up around the interpretation of Cronbach’s alpha, based, apparently, on the published work of Nunally (1978). According to this myth, Nunally advocated an alpha of 0.7 as indicating a scale that was acceptable for use in research. In fact, it’s worth quoting Nunally’s paper, which offers a much more nuanced and thoughtful approach to the question:


So bear in mind that mindlessly setting a desired alpha of 0.7 and citing Nunally’s original paper is wrong. He didn’t say anything like that. And, second, that you need to consider carefully the context of your research in setting a minimum alpha.

Alpha only applies to unidimensional scales
One of the statistical assumptions underlying alpha is that the scale is unidimensional. That is to say, that all the items measure the same thing, and that their failure to correlate perfectly is due to measurement error. So an important part of scale development is making sure that your items are indeed unidimensional.

How many cases should a reliability study have?
The standard advice is to have at least 10 participants per item on your scale. However, this should be regarded as the bare minimum.

There are surprising differences of opinion in the literature, however, on how small your sample can be, and the best advice is based on simulation studies where authors have studied the power of samples of various sizes to detect a given alpha.

The answer depends on the structure of your scale. Sample sizes as small as 30 can measure alpha reliably so long as the scale items have strong inter-correlations.

First step: principal components analysis
Your analysis should begin with a principal components analysis. A principal components analysis identifies underlying ‘dimensions’ that account for the variation in a set of items. In the case of reliability, you should only examine the first principal component. There is a good reason for this: alpha has no differences in means for different experimental treatments, for which purposes a reliability of .80 for the different measures is adequate.”

“In many applied problems, a great deal hinges on the exact score made by a person on a test... In such instances it is frightening to think that any measurement error is permitted. Even with a reliability of .90, the standard error of measurement is almost one-third as large as the standard deviation of the test scores. In those applied settings where important decisions are made with respect to specific test scores, a reliability of .90 is the minimum that should be tolerated, and a reliability of .95 should be considered the desirable standard.”
interpretation when scales combine items that measure different constructs. The first principal component measures the degree to which the items measure the same construct.

Samuels, summarising the literature, makes these recommendations
1. Don’t run reliability analysis with less than 30 participants
2. If you have between 30 and 50 participants, remove items that have loadings of less than 0·4 on the first principal component. This means that that very little of the variation in the responses to that item are shared with the other scale items.
3. Rerun the principal components analysis and examine the first eigenvalue (the eigenvalue for the first principal component). If this is less than 6, do not attempt a reliability analysis; the items just don’t show enough homogeneity to yield a reliable estimate of alpha.
4. Ideally, scale items should have a loading of 0·8 or more on the first principal component. Items between 0·4 and 0·8 need to be considered carefully as candidates for inclusion.
5. If your sample size is between 50 and 100, then follow the same steps, but if your eigenvalue falls between 3 and 6, then only perform a reliability analysis if the sample size is at least 75. See Yurdugül for details of how these figures are arrived at.

References


5. Sample size calculation for agreement between two raters using a present/absent rating scale using Cohen’s Kappa

This section give guidelines for sample sizes for studies that use the kappa coefficient to measure the agreement between two raters who make ratings of present/absent.

Introduction
Studies looking at the agreement between raters come in many shapes and sizes. The most basic design is where two raters are asked to rate the presence or absence of a particular feature or quality. Kappa is a statistic that measures the degree of agreement over and above the agreement you would expect by chance. You can see why just measuring percentage agreement is not enough. If you toss two coins, they will agree 50% of the time just by chance. Likewise, two raters, each of whom rates a feature as present 50% of the time will agree with each other by chance 50% of the time.

When we are studying agreement, we have to choose a null hypothesis. Normally, the null hypothesis says that the data arose by chance – that there is no actual relationship between the variables we are studying. However, this makes no sense at all when we are studying agreement. It would be ridiculous to set up a scientific study to determine whether the agreement between two pathologists was better than chance! When two raters rate the same thing, it would be unusual to find that they didn’t agree any more than you would expect by chance, even in psychiatry.

So in studies of agreement, we have to set a minimum level of agreement that we want to outrule in our study. Usually we would like to outrule a level of agreement that would suggest that there was a significant problem with the reliability of the rating. So unlike other sample size methods, the researcher will have to base sample size calculation for kappa on two figures: the value of kappa to be outruled and the likely true value of kappa. In addition, the prevalence of the feature will affect sample size.

Estimating sample size for kappa
The sample size will depend on three factors:
1. What is the approximate prevalence of the feature that is being rated?
Sample sizes will be smallest when there is a 50% prevalence, and will get very large when the prevalence drops much below 25%.
In the calculations below, we assume that there is no systematic difference between the raters. In other words, that each rater gives more or less the same prevalence of the feature. Where you suspect that raters will give different prevalences, the sample size calculation needs to take this into account, and is well beyond the scope of this guide. However, the R package I used will perform the calculation.

2. What level of agreement would constitute an unacceptably low level of agreement?

The design of agreement studies is to show that the level of agreement is better than this.

In practice, a kappa of 0.2–0.40 is regarded as a fair level of agreement, 0.41–0.60 as moderate, 0.61–0.80 as substantial and anything above 0.8 as excellent. That said, these cutpoints have a sort of folkloric status, and the interpretation of kappa is probably best done in the context of the decision that it supports.

In the tables that follow I will tabulate sample sizes for kappa in cases where you want to demonstrate that kappa is better than 0.4 (so agreement is better than 'fair'), better than 0.5 or 0.6 (better than 'moderate') and better than 0.7 and 0.8 (better than 'substantial').

3. What is the level of agreement that you think is actually present?

This is the value of kappa that you think is actually present. For example, if your hypothesis is that agreement is substantial rather than simply being moderate, then you might set up your sample size to detect a kappa of 0.75 against a null hypothesis that kappa is 0.6. This would require 199 ratings made by the two raters to achieve 90% power. However, if you hypothesised that kappa was 0.75, as before, but wanted to rule out a kappa of 0.5, the required sample size drops to a very manageable 78.

### Sample sizes for kappa for two raters

<table>
<thead>
<tr>
<th>Prevalence</th>
<th>Hypothesised kappa</th>
<th>Kappa to be outruled (null hypothesis kappa)</th>
<th>90% power</th>
<th>95% power</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.6</td>
<td>0.4</td>
<td>156</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>0.5</td>
<td>131</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.6</td>
<td>102</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>0.45</td>
<td>87</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.55</td>
<td>68</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.5</td>
<td>49</td>
<td>65</td>
</tr>
</tbody>
</table>

Sample Size: pilot studies
45

<table>
<thead>
<tr>
<th>Prevalence</th>
<th>Hypothesised kappa</th>
<th>Kappa to be outruled (null hypothesis kappa)</th>
<th>90% power</th>
<th>95% power</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4/0.6</td>
<td>0.6</td>
<td>0.4</td>
<td>162</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>0.5</td>
<td>137</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.6</td>
<td>106</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>0.45</td>
<td>90</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.55</td>
<td>71</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.5</td>
<td>51</td>
<td>68</td>
</tr>
</tbody>
</table>

Sample Size: pilot studies
46
Example
A researcher wishes to study the agreement between family doctors on whether or not to prescribe an antibiotic for uncomplicated rhinitis. The prevalence of antibiotic prescribing is about 25%. She would like to show that the kappa value for agreement is better than 0.5. She hypothesises that the true kappa might be between 0.7 and 0.8.

Looking at the table, if the true kappa is 0.7, she will need to compare the doctors’ ratings for 176 patients to have a 90% power to outrule a kappa as low as 0.5. On the other hand, if the true kappa is 0.75, she would have 90% power to outrule a kappa as low as 0.45 with a sample of 116.

Limitations of these tables
There are so many potential combinations of prevalence, kappa-to-be-outruled and hypothesised kappa that these tables can only give an approximate idea of the numbers involved. And they don’t cover cases where the two raters have different prevalences, or where there are more than two raters etc. To get precise calculations for a wide variety of scenarios, I recommend using the R package irr.

Reference
These sample sizes were calculated with the N.cohen.kappa command in the irr package in R. The command uses a formula published in Cantor, A. B. (1996) Sample-size calculation for Cohen's kappa. Psychological Methods, 1, 150-153.

The sample sizes in the table were produced using variations on this command:

\[
N.cohen.kappa(0.1, 0.1, 0.5, 0.8, power=.95)
\]

6. Sample size for pilot studies

Introduction
The sample size methods used so far presuppose that the investigator has some kind of knowledge that can be used to make informed guesses about such things as prevalences, effect sizes etc. However, by their very essence pilot studies are carried out when the researcher is facing the unknown. However, there are some general principles which can be applied to ensure that enough data are captured by a pilot study to inform subsequent study design with the smallest use of resources.

Things that are not sample size calculations
Every ethics committee has experience of researchers whose sample size calculations amount to:

- Everyone else used six animals per group
- We did another study that used 10 patients and it was significant/got published
- We have limited funding/the student is only available for x weeks
- This is just a student project

The legal advisor to RCSI’s research ethics committee has advised us that there is no legal defence that runs Well, everyone else did it too.

See previous sections, too, for why sample size should be set to detect the minimum effect that would be clinically significant, not the effect that someone else found or that the researcher thinks is there.

Sample size: the law of diminishing returns
Sample size for pilot studies starts with the observation that each participant that you recruit into a study yields less information than the last one. This law of diminishing returns can be used to define a point beyond which recruiting additional participants will yield minimal improvement in estimating effects. Calculations by Julious (2005) and Van Belle (2008) both show that in studies that compare the means of two groups, beyond a sample size of 12 per group the effect of each additional participant on the precision is minimal. If your pilot study is purely exploratory and your aim is to get a preliminary estimate of the difference between two groups, then a sample size of 12 per group can be justified on the basis of these references.

Sample size to justify carrying out a full study
Sometimes there are cases when the investigator will have a preliminary estimate of the minimum difference between groups that would constitute a clinically significant difference. The purpose of the pilot study is to justify
carrying out a full study. For example, before conducting a study of the effects of a physiotherapy programme on balance in the elderly, the investigators might be required to do a pilot to show that there were grounds for believing that such a programme would produce a clinically significant improvement in balance.

Cocks et al (2013) provide an algorithm for estimating the size of a pilot study that will give the ‘go-ahead’ to a main study. Their rule of thumb, based on calculated sample sizes for various scenarios, is to recruit 9% of the projected final sample, or 20 participants, whichever is the greater, as a pilot. If there is no difference between the groups, then it is unlikely that the true effect size is as large as the one specified by the investigators. Note that this conclusion is based on an 80% confidence interval, not the usual 95%. If you are using this method, please read Cocks’ paper for further detail and worked examples.

Method
Calculate the sample size from section 2.1.
Use 9% of this sample size or 20 participants, whichever is the greater.
If, when you analyse the pilot study, there is no significant difference between the groups, it is unlikely that the effect size reaches clinical significance.

References

7. Sample size for animal experiments in which not enough is known to calculate statistical power
In animal experiments, the investigator may have no prior literature to turn to. The potential means and standard deviations of the outcomes are unknown, and there is no reasonable way of guessing them. In a case like this, sample size calculations cannot be applied.

The resource equation method
The resource equation method can be used for minimising the number of animals committed to an exploratory study. It is based on the law of diminishing returns: each additional animal committed to a study tells us less than the one to reach the threshold where adding further animals will be uninformative. It should only be used for pilot studies or proof-of-concept studies.

Applying the resource equation method
1. How many treatment groups will be involved? Call this T.
2. Will the experiment be run in blocks? If so, how many blocks will be used? Call this B
A block is a batch of animals that are tested at the same time. Each block may have a different response because of the particular conditions at the time they were tested. Incorporating this information into a statistical analysis will increase statistical power by removing variability between experimental conditions on different days.
3. Will the results be adjusted for any covariates? If so, how many? Call this C
Covariates are variables that are measured on a continuous scale, such as the weight of the animal or the initial size of the tumour: Results can be adjusted for such variables, which increases statistical power.
4. Combine these three figures:
\[(T-1) + (B+C-1) = D\]
5. Add at least 10 and at most 20
The sample size should be at least \(D+10\) and at most \(D+20\).

Example of the resource equation method
An investigator wishes to examine the effect of a new delivery vehicle for an anti-inflammatory drug. The experiment will involve four treatments: a control, a group receiving a saline injection, a group receiving the vehicle alone and a group receiving the vehicle plus drug. Because of laboratory limitations, only four animals can be done on one day. The experimenter doesn’t plan on adjusting the results for factors like the weight of the animal.
In this case, T (treatments) is 4 and C (covariates) is zero. So the sample size is at least 10 + (T−1) which is 10 + 3, which is 13. However, 13 animals will have to be done in at least 3 batches (assuming that the lab could manage a batch of five). This means that the experiment will probably have a minimum of 3 blocks, and more likely four. So, taking the blocks into consideration, the minimum sample size will be 10 + (T−1) + (B−1), which is 10 + 3 + 3, which is 16 animals.

The experimenter might like to aim for the maximum number of animals, to reduce the possibility that the experiment will come to a false-negative conclusion. In this case, 20 + (T−1) suggests 23 animals, which will have to be done in 6 blocks of four: 20 + (T−1) + (B−1) is 28, which means running 7 blocks of four, which requires another adjustment: an extra animal is needed because the number of blocks is now 7. The final maximum sample size is 29.

As you can see, when you are running an experiment in blocks, the sample size will depend on the number of blocks, which, in turn, may necessitate a small adjustment to the sample size.

**Why do investigators use groups of 6 animals?**

In early-stage research, most of the effects discovered will be dead ends. For this reason, researchers are only interested in pursuing differences between groups that are very large indeed. As can be seen from the table under “comparing the means of two groups”, two groups of 6 animals will detect a situation in which the scores of one group are almost entirely distinct from the scores of the other – there is a 92% chance that an animal in the high-scoring group will score higher than an animal in the low-scoring group.

“Everyone else used 6” is not a sample size calculation

Researchers should remember that this precludes the power to detect smaller differences, and justify their sample sizes based on the statistical power and the requirement for clinically significant effects to be very large. It’s not enough to say that everyone else used groups of 6.

---

8. Sample size for qualitative research

**Issues**

Qualitative researchers often regard sample size calculations as something that is only needed for quantitative research. However, qualitative research protocols typically contain statements like "participants will be recruited until data saturation occurs". So there is already an appreciation that a certain number of participants will be "enough participants".

Clearly, it is important when planning (and especially budgeting) a qualitative research project to know how many participants will be needed. These guidelines are partly derived from an excellent paper by Morse1

**General guidance**

Over-estimate your sample size when writing a proposal and budgeting it. This gives you some insurance against difficulties in recruitment, participants whose data is not very useful and other unanticipated snags.

**Specific factors affecting sample size**

*Scope of study and nature of the topic*

If the scope of the study is broad, then more participants will be needed to reach saturation. Indeed, broad topics are more likely to require data from multiple data sources. Doing justice to a broad topic requires a large commitment of time and resources, including large amounts of data. Broad studies should not be undertaken unless they are well-supported and have a good chance of achieving what they set out to do.

If the study addresses an obvious, clear topic, and the information will be easily obtained from the participants, then fewer participants will be needed. Topics that are harder to grasp and formulate are often more important, but require greater skill and experience from the researcher, and will require more data.

If they study topic is one about which people will have trouble talking (because it is complex, or embarrassing, or may depend on experiences which not everyone has) you will need more participants.

*Quality of data*

The ability of participants to devote time and thought to the interview, and to articulate their experiences and perceptions, and to reflect on them, will all affect the richness of the data. Where interviews are likely to be lower in information, larger sample sizes are needed.

---

Likewise, when participants are being interviewed several times, this will generate more data, and sample sizes will be smaller.

**Shadowed data**

This is a term coined by Morse for situations in which participants talk about the experiences of others. You might call it ‘secondhand data’. Collecting such data can make interviews more information rich. However, it is no substitute for collecting first hand data, and may introduce bias.

**Variability**

The more variable the experiences, perceptions and meanings of the participants, the more participants will be needed to achieve the same degree of saturation.

**So how many?**

Morse recommends that semi-structured interviews with relatively small amounts of data per person should have 30 to 60 interviews. On the other hand, grounded theory research, with two to three unstructured interviews per person, should need 20 to 30 participants. In either case, the final choice of number should be guided by the other factors above.

**A statistical approach**

One question that a qualitative researcher should think about is this: if something doesn’t emerge in my research (an attitude, an experience etc) then how common could it be in the population I am researching? Research, to be valid, must have a reasonable chance of detecting things that are common enough to matter.

The table shows numbers of participants and, for each number, shows how rare a theme, experience or issue would have to be so that it was unlikely to be detected by the study.

<table>
<thead>
<tr>
<th>Size of study</th>
<th>If you don’t find something, the maximum likely prevalence is</th>
<th>That’s roughly</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>6%</td>
<td>1 person in 20</td>
</tr>
<tr>
<td>40</td>
<td>9%</td>
<td>1 person in 10</td>
</tr>
<tr>
<td>30</td>
<td>13%</td>
<td>1 person in 8</td>
</tr>
<tr>
<td>20</td>
<td>18%</td>
<td>1 person in 6</td>
</tr>
<tr>
<td>15</td>
<td>25%</td>
<td>1 person in 4</td>
</tr>
<tr>
<td>10</td>
<td>37%</td>
<td>1 person in 3</td>
</tr>
<tr>
<td>8</td>
<td>46%</td>
<td>1 person in 2</td>
</tr>
<tr>
<td>5</td>
<td>74%</td>
<td>3 people in 4</td>
</tr>
</tbody>
</table>

As you can see, if a study of 60 people fails to identify a theme, experience or issue, that issue is probably rare – affecting about one person in 20 or fewer. However, a study of 15 participants can fail to identify something which affects one person in every four! And a study of 8 participants is quite likely to fail to find out things that affect half of the study population.

Clearly, shadowing (second hand data) can reduce these error rates by getting participants to talk about others, but this is no substitute for including the others in the research. Part of this is trying to chose a sample in such a way as to span the population, but this relies on knowing the factors that make for diversity in the population – something that may only become clear after the research is well under way.

However, both expert opinion in the area of qualitative research and the table above suggest that samples of less than 20 participants have to be justified on the grounds that they are unusually rich in data and representative.
9. Resources for animal experiments

There are several excellent papers on reducing the numbers of animals needed in animal research. FRAME (http://www.frame.org.uk/index.htm) publishes and links to a number of papers. The following are recommended reading, and include information on sample size,

http://embryo.ib.amwaw.edu.pl/invittox/er/ER/ER%2029.pdf
http://www.frame.org.uk/atlafn/statsguidelines.pdf

The Institute for Laboratory Animal Research has a whole issue of their journal devoted to the subject: http://dels.nas.edu/ilar_n/ilarjournal/43_4/

There is a collection of useful papers at

http://embryo.ib.amwaw.edu.pl/invittox/er

There are also good general guidelines on

http://www.rgs.uci.edu/ora/rp/acup/policies/animalnumbers.htm

9. Computer and online resources

Free, highly recommended package: G*Power

http://gpower.hhu.de/

For applications that go beyond the ones described here, including multiple regression, I can strongly recommend G*Power, which is free and multi-platform. There is an excellent manual.

Standard statistical packages

Stata also has a powerful set of sample size routines, and there are many user-written routines to calculate sample sizes for various types of study. Use the command findit sample size to get a listing of user-written commands that you can install.

The free professional package R includes sample size calculation (but requires a bit of learning). I recommend using software called RStudio as an interface to R. It makes R far easier to learn and use.

And no, SPSS will sell you a sample size package, but it isn’t included with SPSS itself. If you use SPSS, my advice is to use G*Power and save money.

Sample size calculators and Online resources

You can look for sample size software to download at

http://statpages.org/javasta2.html

The Graph Pad website has a lot of helpful resources

http://graphpad.com/welcome.htm

They make an excellent sample-size calculator application called StatMate which gets high scores for a simple, intelligent interface and very useful explanations of the process. It has a tutorial that walks you through.

http://graphpad.com/scientific-software/statmate/

The very useful free package Epicalc 2000 includes sample size calculation as well as a host of useful ways of analysing tabulated data

http://www.brixtonhealth.com/epicalc.html

There is a free Windows power calculation program at Vanderbilt Medical Center http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize

G*Power is a very comprehensive package for both Windows and Mac, available from http://gpower.hhu.de/
And, of course, there’s an app for that too: a free sample size app for iOS at http://itunes.apple.com/us/app/sample-size/id376524218?mt=8#

**Online sample size calculators**

*Power and sample size*
http://powerandsamplesize.com/
Excellent site with well-designed and validated calculators for a wide variety of study designs. Recommended as a first stop.

*Simple Interactive Statistical Analysis (SISA)*
http://www.quantitativeskills.com/sisa/calculations/sampship.htm
Easy-to-use with good explanations but a smaller selection of study designs.

*The survey system and Survey Monkey*
http://www.surveysystem.com/sscalc.htm
https://www.surveymonkey.com/mp/sample-size-calculator/
Sample sizes for surveys. Survey Monkey has a very readable web page on sample size considerations.

*Harvard sample size calculators*
http://hedwig.mgh.harvard.edu/sample_size/size.html
A small selection, but clearly organised by study type.

*Russ Lenth’s help pages*
http://www.stat.uiowa.edu/~rlenth/Power/
Excellent advice on sample size considerations as well as actual interactive calculation.

*Rules of thumb*
Gerard van Belle’s chapter on rules of thumb for sample size calculation can be downloaded from his website (http://www.vanbelle.org/) It's extracted from his book.